jueves, 30 de agosto de 2012

Origen y evolución del sistema solar: Trabajo colaborativo


1) Contribuciones de los antiguos sabios griegos al conocimiento del mundo


Anaximandro (570 a.c.)
Afirma que la tierra es cilíndrica, tres veces más ancha que profunda y únicamente con la parte superior habitada; esta Tierra está aislada en el espacio. El cielo es una esfera en el centro de la cual se sostiene, sin soportes, nuestro cilindro. Los astros pertenecen a ruedas tubulares opacas que contienen fuego y en las cuales, en ciertos puntos, un agujero deja ver ese fuego. Esas ruedas giran alrededor del cilindro terrestre: Primera noción del círculo en cosmología. Los eclipses y las fases de la Luna resultan de la obturación de sus respectivos agujeros. Además, las estrellas estaban más cerca de la Luna y el Sol.

Heráclides (500a.c.)
Le atribuye al Sol el tamaño de un pie humano y ve en él una antorcha divina que nace y muere cada día. Al mismo tiempo, hace girar sobre si misma en 24 horas mientras que el cielo está en reposo.

Tales (600a.c.)
Atribuye forma esférica a la Tierra y a todos los astros del cielo, considerando a nuestro planeta un cuerpo de segunda importancia que no esta en reposo en el centro del universo.

Anaxágoras (450 a.c.)
Dice que los planetas y la Luna son cuerpos sólidos como la Tierra, lanzados al espacio como proyectiles; da la teoría exacta de los eclipses de Luna por inmersión en la sombra de la Tierra: primera teoría de un fenómeno astronómico por una relación entre los astros.

Filolao (410a.c.)
Dice que el centro del mundo está ocupado por un cierto “fuego”; el Sol gira en un año en torno a ese fuego central en una órbita más lejana. Alrededor del fuego, rota un planeta desconocido: la “Anti-Tierra”, luego viene la Tierra, describiendo un circulo alrededor del fuego en 24 horas, pero volviendo siempre la misma cara al exterior. Más lejos coloca a la Luna, al Sol y luego a los planetas en el siguiente orden: Venus, Mercurio, Marte, Júpiter y Saturno.

Heráclides del Ponto (373 a.c.)
Dice que la tierra gira sobre sí misma en 24 horas mientras que el cielo está en reposo. También señaló que Venus gira alrededor del Sol y en torno a la Tierra, reafirmando que a veces, Venus se halla más cerca y otras más lejos de nosotros.
2) Diferencias entre un modelo geocéntrico y otro heliocéntrico.

El modelo Geocéntrico afirmaba que la Tierra era el centro del Universo conocido en la antigüedad, es decir que el Sol , la Luna y los planetas visibles en ese entonces giraban alrededor de ella.
Esta teoría se basaba en la observación cotidiana: el Sol "sale" del este y se "pone" en el oeste.
Pero, luego surge la Teoría Heliocéntrica, generada `por NIcolás Copérnico, quien allá por el 1.500 demostró que el Sol (Helios) era en realidad en centro del Sistema Solar, o sea la Tierra y los demás planetas giran alrededor de él.

El heliocentrismo es un modelo astronómico en el que la Tierra y los planetas se mueven alrededor de un Sol que se encuentra relativamente estacionario con respecto al centro del Sistema Solar.

3) Principal contribucion de Ptolomeo

Ptolomeo (83 - 126 dC) fue un pensador, matemático y astrónomo antiguo de la ciudad de Alejandría, en Egipto. De orígen griego, dedicó gran parte de sus estudios a describir los movimientos de los astros en busca de razones matemáticas que sustentaran el modelo geocéntrico de Aristóteles.

Esencialmente, Ptolomeo aseguró que la Tierra existía estacionaria en el centro del Universo, en tanto los astros eran "gases luminosos" que giraban en torno a ella, cosas ligeras que flotaban en el cielo entre la Tierra y la bóveda celeste (la capa más exterior del universo a la cual estaban "adosadas" las estrellas).  Esta visión sería imperante durante toda la antigüedad y la Edad Media.

4) “Los rizos que los planetas trazan en el cielo terrestre”, explicación mediante la teoría de los epiciclos.

Mediante la teoría de los epiciclos se deducía que el “rizo” mediante la combinación de los movimientos de las dos esferas interiores de las cuatro que poseía cada planeta.

5) Sistema de Copérnico e imperfecciones.

Las ideas principales de su teoría son:
• Los movimientos celestes son uniformes, eternos, y circulares o compuestos de diversos ciclos (epiciclos).
• El centro del universo se encuentra cerca del Sol.
• Orbitando el Sol, en orden, se encuentran Mercurio, Venus, la Tierra y la Luna, Marte, Júpiter, Saturno.
• Las estrellas son objetos distantes que permanecen fijos y por lo tanto no orbitan alrededor del Sol.
• La Tierra tiene tres movimientos: la rotación diaria, la revolución anual, y la inclinación anual de su eje.
• El movimiento retrógrado de los planetas es explicado por el movimiento de la Tierra.
• La distancia de la Tierra al Sol es pequeña comparada con la distancia a las estrellas.
Sin embargo, aún mantenía algunos principios de la antigua cosmología, como la idea de las esferas dentro de las cuales se encontraban los planetas y la esfera exterior donde estaban inmóviles las estrellas.

6) ¿Cómo fueron tomadas las ideas de Copérnico en esa epoca?
En aquella época resultó difícil que los científicos lo aceptaran, ya que suponía una auténtica revolución. En una epístola fechada de noviembre de 1536, el arzobispo de Capua, Nikolaus Cardinal von Schönberg, pidió a Copérnico comunicar más ampliamente sus ideas y solicitó una copia para sí. Algunos han sugerido que esta carta pudo haber hecho a Copérnico sospechoso al publicar, mientras que otros han sugerido que esto indicaba el deseo de la Iglesia de asegurarse que sus ideas fueran publicadas. A pesar de la presión ejercida por parte de diversos grupos, Copérnico retrasó la publicación de su libro, tal vez por miedo al criticismo. Algunos historiadores consideran que de ser así, estaba más preocupado por el impacto en el mundo científico que en el religioso.

7)  Esquema de Brahe y comparación con el de Copérnico y Ptolomeo.
• Sistema de Brahe.
El sistema del Universo que presenta Tycho es una transición entre la teoría geocéntrica de Ptolomeo y la teoría heliocéntrica de Copérnico. En la teoría de Tycho, el Sol y la Luna giran alrededor de la Tierra inmóvil, mientras que Marte, Mercurio, Venus, Júpiter y Saturno girarían alrededor del Sol.
Brahe estaba convencido que la Tierra permanecía estática en relación al Universo porque, si así no fuera, debería poder apreciarse los movimientos aparentes de las estrellas. Sin embargo, aunque tal efecto existe realmente y se denomina paralaje, la razón por la cual no lo comprobó es que no puede ser detectado con observaciones visuales directas. Las estrellas están mucho más lejos de lo que se pensaba razonable en la época de Tycho Brahe.
La teoría de Tycho Brahe es parcialmente correcta. Habitualmente se considera a la tierra girando alrededor del sol porque se toma como punto de referencia a éste último. Pero si se considera la tierra como referencia, el sol gira en torno a la tierra, así como la luna. No obstante Tycho Brahe pensaba que la orbita de los mismos era circular, cuando en realidad son elipses. La forma de la orbitas fue propuesta por Kepler en su primera ley, basándose en las observaciones de Tycho Brahe.
En los años siguientes a las observaciones de las fases de Venus por Galileo en 1610, la Iglesia Católica abandonaría el sistema geocéntrico de Ptolomeo, y adoptaría el sistema de Tycho Brahe como su concepción oficial del Universo.
• Sistema de Copérnico.
La teoría de Copérnico establecía que la Tierra giraba sobre sí misma una vez al día, y que una vez al año daba una vuelta completa alrededor del Sol. Además afirmaba que la Tierra, en su movimiento rotatorio, se inclinaba sobre su eje (como un trompo). Sin embargo, aún mantenía algunos principios de la antigua cosmología, como la idea de las esferas dentro de las cuales se encontraban los planetas y la esfera exterior donde estaban inmóviles las estrellas. Por otra parte, esta teoría heliocéntrica tenía la ventaja de poder explicar los cambios diarios y anuales del Sol y las estrellas, así como el aparente movimiento retrógrado de Marte, Júpiter y Saturno, y la razón por la que Venus y Mercurio nunca se alejaban más allá de una distancia determinada del Sol. Esta teoría también sostenía que la esfera exterior de las estrellas fijas era estacionaria.
• Sistema de Ptolomeo.
Según dicho sistema, la Tierra se encuentra situada en el centro del Universo y el sol, la luna y los planetas giran en torno a ella arrastrados por una gran esfera llamada "primum movile", mientras que la Tierra es esférica y estacionaria. Las estrellas están situadas en posiciones fijas sobre la superficie de dicha esfera. También, y según la teoría de Ptolomeo, el Sol, la Luna y los planetas están dotados además de movimientos propios adicionales que se suman al del primun movile. Ptolomeo afirma que los planetas describen órbitas circulares llamadas epiciclos alrededor de puntos centrales que a su vez orbitan de forma excéntrica alrededor de la Tierra. Por tanto la totalidad de los cuerpos celestes describen órbitas perfectamente circulares, aunque las trayectorias aparentes se justifican por las excentricidades

9) Principales aportes de Tincho Brahe a la astronomía en su epoca  y la influencia de su trabajo en el de Kepler.
Hizo que se construyera Uraniborg, un palacio que se convertiría en el primer instituto de investigación astronómica. Los instrumentos diseñados por Brahe anteriores al telescopio, le permitieron medir las posiciones de las estrellas y los planetas con una precisión muy superior a la de la época. Tycho también trabajó en la predicción del tiempo, realizó interpretaciones astrológicas de la supernova de 1572 y del cometa de 1577, y escribió cartas astrales para sus patrones, Federico II y Rodolfo II.
Atraído por la fama de Brahe, Johannes Kepler aceptó una invitación que le hizo para trabajar junto a él en Praga. Tycho pensaba que el progreso en astronomía no podía conseguirse por la observación ocasional e investigaciones puntuales sino que se necesitaban medidas sistemáticas, noche tras noche, utilizando los instrumentos más precisos posibles.
Tras la muerte de Brahe las medidas sobre la posición de los planetas pasaron a posesión de Kepler, y las medidas del movimiento de Marte, en particular de su movimiento retrógrado, fueron esenciales para que pudiera formular las tres leyes que rigen el movimiento de los planetas.


10) Primera ley de Kepler y su importancia para la comprensión del sistema solar.
Las leyes de Kepler fueron enunciadas por Johannes Kepler para describir matemáticamente el movimiento de los planetas en sus órbitas alrededor del Sol.
Los planetas tienen movimientos elípticos alrededor del Sol, estando éste situado en uno de los focos de la elipse.
Después de ese importante salto, en donde por primera vez los hechos se anteponían a los deseos y los prejuicios sobre la naturaleza del mundo. Kepler se dedicó simplemente a observar los datos y sacar conclusiones ya sin ninguna idea preconcebida. Pasó a comprobar la velocidad del planeta a través de las órbitas llegando a la segunda ley.
Es importante señalar la importancia histórica de las leyes de Kepler como descripción cinemática del movimiento de los planetas. Cómo la dinámica del movimiento circular uniforme y la tercera ley de Kepler aplicadas al movimiento de la Luna condujeron a Newton a formular la ley de la Gravitación Universal, fuerza inversamente proporcional al cuadrado de la distancias, y a identificar como de la misma naturaleza las causas del movimiento de la Luna en torno a la Tierra y de la caída de los cuerpos en su superficie.

11) Importancia para el estudio de los astros, el telescopio de Galileo, principales pruebas y observaciones de Galileo para verificar la teoría heliocéntrica de Copérnico.
La importancia para el estudio de los astros el telescopio de Galileo fue que: el Sol, considerado hasta entonces símbolo de perfección, tenía manchas. La Luna tenía una superficie irregular con valles y montañas. Saturno tenía unos apéndices extraños, etc. Pero sus observaciones más trascendentales fueron las que realizó de Júpiter. Demostró que este planeta estaba rodeado de lunas y era similar a un mini-sistema solar, lo que constituyó un poderoso argumento en favor del universo copernicano.

- Principales pruebas y observaciones de Galileo para verificar la teoría heliocéntrica.
• Montañas en la Luna. Fue el primer descubrimiento de Galileo con ayuda del telescopio, publicado en el Sidereus Nuncius en 1609. Con él refuta la tesis aristotélica de que los cielos son perfectos, y en particular la Luna una esfera lisa e inmutable. Frente a eso, Galileo presenta numerosos dibujos de sus observaciones, e incluso estimaciones de la altura de montañas, si bien errados por realizar estimaciones incorrectas de la distancia de la Luna.
• Nuevas estrellas. Fue el segundo descubrimiento de Galileo, también publicado en el Sidereus Nuncius. Observó que el número de estrellas visibles con el telescopio se duplicaba. Además, no aumentaban de tamaño, cosa que sí ocurría con los planetas, el Sol y la Luna. Esta imposibilidad de aumentar el tamaño era una prueba de la hipótesis de Copérnico de la existencia de un enorme hueco entre Saturno y las estrellas fijas. Esta prueba refutaba el mejor argumento a favor del sistema ptolemaico, a saber que de ser cierta la teoría copernicana, debería observarse la paralaje, o diferencia de posiciones de las estrellas dependiendo de lugar de la Tierra en su órbita. Así, debido a la enorme lejanía de las mismas en relación al tamaño de la órbita no era posible apreciar dicha paralaje.
• Satélites de Júpiter. Probablemente el descubrimiento más famoso de Galileo. Lo realizó el 7 de enero de 1610, y provocó una conmoción en toda Europa. Cristóbal Clavio, astrónomo del Colegio Romano de los jesuitas, afirmó: “Todo el sistema de los cielos ha quedado destruido y debe arreglarse”. Era una importante prueba de que no todos los cuerpos celestes giraban en torno a La Tierra, pues ahí había cuatro planetas (en la concepción de planetas que entonces se concebía, que incluía la Luna y el Sol) que lo hacían en torno a Júpiter.
• Manchas solares (primera prueba). Otro descubrimiento que refutaba la perfección de los cielos fue la observación de manchas en el Sol que tuvo lugar a finales de 1610 en Roma, si bien demoró su publicación hasta 1612.[] El jesuita Cristoph Scheiner, con el pesudónimo de Padre Apelles, se atribuye su descubrimiento e inicia una agria polémica argumentando que son planetoides que están entre el Sol y la Tierra. Por el contrario, Galileo demuestra, con la ayuda de la teoría matemática de los versenos que están en la superficie del Sol. Además, hace otro importante descubrimiento al mostrar que el Sol está en rotación, lo que sugiere que también la Tierra podría estarlo.
• Las fases de Venus. Esta prueba es un magnífico ejemplo de aplicación del método científico, que Galileo usó por primera vez. La observación la hizo en 1610, aunque demoró su publicación hasta El Ensayador, aparecido en 1623, si bien para asegurar su autoría hizo circular un criptograma, anunciándolo de forma cifrada. Observó las fases, junto a una variación de tamaño, que son sólo compatibles con el hecho de que Venus gire alrededor del Sol, ya que presenta su menor tamaño cuando se encuentra en fase llena y el mayor, cuando se encuentra en la nueva; es decir, cuando está entre el Sol y la Tierra. Esta prueba refuta completamente el sistema de Ptolomeo que se volvió insostenible. A los jesuitas del Colegio Romano sólo les quedaba la opción de aceptar el sistema copernicano o buscar otra alternativa, lo que hicieron refugiándose en el sistema de Tycho Brahe, dándole una aceptación que hasta entonces nunca había tenido. Fases de Venus.
• Argumento de las mareas. Presentada en la cuarta jornada del diálogo sobre los dos sistemas del mundo. Es un argumento brillante y propio del genio de Galileo, sin embargo, es el único de los que presenta que estaba equivocado. Según galileo, el movimiento rotatorio de la Tierra, al moverse en su traslación alrededor del Sol hace que los puntos situados en la superficie Tierra sufran aceleraciones y deceleraciones cada 12 horas, que serían las causantes de las mares. En esencia, el argumento es correcto, y esta fuerza existe en realidad, si bien su intensidad es muchísimo menor que la que Galileo calcula, y no es la causa de las mareas. El error proviene del desconocimiento de datos importantes como la distancia al Sol y la velocidad de la Tierra. Si bien estaba equivocado, Galileo desacreditó completamente la teoría del origen lunar de estas fuerzas por falta de explicación de su naturaleza, y del problema de explicación de la marea alta cuando la Luna está en sentido contrario, pues alega que la fuerza sería atractiva y repulsiva a la vez. Sería necesario esperar hasta Newton para resolver este problema, no sólo explicando el origen de la fuerza, sino también el cálculo diferencial para explicar el doble abultamiento. Pero, aún equivocada, situada en su contexto, la tesis de Galileo presentaba menos problemas y era más plausible en su explicación de las mareas.
• Manchas solares (Segunda prueba). Nuevamente, en su gran obra, el diálogo sobre los sistemas del mundo, Galileo retoma el argumento de las manchas solares, convirtiéndolo en un poderoso argumento contra el sistema de Tycho Brahe, el único refugio que quedaba a los geocentristas. Galileo presenta la observación de que el eje de rotación del Sol está inclinado, lo que hace que la rotación de las manchas solares presente una variación estacional, un “bamboleo” en el giro de las mismas. Si bien los movimientos de las manchas se pueden atribuir al Sol o a la Tierra, pues geométricamente esto es equivalente, resulta que no es así físicamente, pues es necesario tener en cuenta las fuerzas que los producen. Si es la Tierra la que se mueve, Galileo indica que basta una explicación con movimientos inerciales: la Tierra en traslación, y el Sol en rotación. Por el contrario, si sólo se mueve el Sol, es necesario que éste esté realizando dos movimientos distintos a la vez, en torno también a dos ejes distintos, generados por motores sin ninguna plausabilidad física. Este argumento vuelve a ser una nueva prueba, junto a las fases de Venus, de carácter positivo y experimental que muestra el movimiento de la Tierra.

12) Comentario del trabajo de Newton y su valor en términos de teoría física, tanto para los fenómenos celestes como para los terrestres.
El trabajo de Newton resulta sumamente útil a la hora analizar tanto los fenómenos terrestres como celestes, ya que con la ley de gravitación universal, se brinda una explicación clara sobre la atracción entre dos objetos, los cuales se encuentran a una distancia que puede ser menor o mayor. Esta ley se aplica para los fenómenos celestes y terrestre ya que explica que los objetos estén en orbita, y con respecto a la tierra explica que las personas seamos atraídas hacia el centro de esta.

13) Epopeya del descubrimiento de Neptuno.
Neptuno fue descubierto probablemente 1846, pero no de la misma manera que los demás planetas del sistema solar. Los astrónomos no buscaron en el cielo con sus telescopios para encontrar a Neptuno. Ellos usaron las matemáticas.
Neptuno es el octavo planeta en nuestro sistema solar. Poco después de su descubrimiento, Neptuno fue llamado, simplemente, "el planeta que le sigue a Urano" o "el planeta de Le Verrier".
En la mayoría de los antiguos sellos cilíndricos que se han encontrado, los símbolos de determinados cuerpos celestes, miembros de nuestro sistema solar, aparecen por encima de las figuras de dioses o humanos, así que, cuando llegó el momento de nombrar este la demanda de un nombre mitológico parecía estar en consonancia con la nomenclatura de los otros planetas, con excepción de Urano los astrónomos escogieron Neptuno, fue el nombre que los romanos antiguos le dieron al dios griego de los mares y los terremotos, Poseidón. El era el hermano de Júpiter (Zeus) y de Plutón (Hades). Después de la derrota de su padre Saturno (Cronos), los tres hermanos dividieron al mundo en tres partes para ser gobernadas por ellos. Júpiter tomó el cielo, Neptuno el mar y Plutón el inframundo. Neptuno tenía fama de tener mal genio. Las tempestades y terremotos reflejaban su rabia furiosa. Era representado como un hombre barbudo aguantando un tridente y sentado en un caracol de mar tirado por caballos de mar.
Neptuno es un planeta dinámico, con manchas, forma parte de los denominados planetas exteriores o gigantes gaseosos, Tras el descubrimiento de Urano, se observó que las órbitas de Urano, Saturno y Júpiter no se comportaban tal como predecían las leyes de Kepler y de Newton.
Los dibujos de Galileo muestran que Neptuno fue observado por primera vez el 28 de diciembre de 1612, y nuevamente el 27 de enero de 1613; En ambas ocasiones, Galileo confundió Neptuno con una estrella cercana a Júpiter en el cielo nocturno. En 1843, John Couch Adams calculó la órbita de un octavo planeta en función de las anomalías observadas en la órbita de Urano. Urbain Le Verrier, el matemático codescubridor de Neptuno, en 1846, independientemente de Adams, produce sus propios cálculos, Le Verrier había convencido a Johann Gottfried Galle para buscar el planeta. Neptuno fue descubierto en 1846. A raíz del descubrimiento, hubo mucha rivalidad nacionalista entre los franceses y los británicos sobre quién tenía prioridad y merecía crédito por el descubrimiento. Finalmente surgió un consenso internacional sobre que tanto Le Verrier como Adams conjuntamente lo merecían.
- Comentario de la epopeya.
A pesar de que en la época que se descubrió neptuno no había grandes avances que facilitaran el estudio del espacio, los astrónomos se las ingeniaron, sin querer, para descubrirlo, demostrándonos que nuestro universo esta lleno de sorpresas y una de las mejores formas de conocerlas es a través de los estudios astronómicos. Pero no se puede llegar a una buena conclusión sin el aporte de más de un científico, estos estudiaron de diferentes maneras al planeta y los primeros descubrimientos fueron de mucha ayuda para los dos astrónomos a los que finalmente se les reconoció el merito de haber encontrado a Neptuno
Pero el hallazgo a demás de producir una gran alegría para la astronomía y la humanidad, trajo como consecuencia un conflicto entre británicos y franceses por el crédito del descubrimiento, lo que nos demuestra que una vez mas el interés individual fue más fuerte que la satisfacción por haber llevado la ciencia a una nueva era.

Actividades sobre la ley de gravitación

En las clases de Física estuvimos realizando distintos problemas y actividades sobre la ley de gravitación, con sus respectivas formulas, los cuales se encontraban en el sitio especial sobre esta cuestión
el link de la pagina es: 
https://sites.google.com/site/050leydegravitacionuniversal/home

Luego de realizar estas actividades nos dividimos en grupos y realizamos un power point en el que elegimos 4 problemas para plasmarlos allí y mostrarlo frente a la clase.
La actividad sirvió para que podamos trabajar de una manera distinta a la habitual (solo con lápiz y papel). Creo que así se vuelve mas interesante y nos ayuda a comprender e incorporar mejor los conocimientos, ya que se vuelve mas entretenido porque nunca habíamos tenido la oportunidad de trabajar con física de esta forma y es algo novedoso para nosotros.
Espero que sigamos realizando este tipo de actividades.

Esta es la presentación que realizamos con unas compañeras, espero que lo disfruten:

https://docs.google.com/presentation/d/1QNtl5Y5bNxYeTUFuX6J6_rhZm8Y4iB1ud7pLUFK2sYk/edit#slide=id.p



jueves, 9 de agosto de 2012

Espejos y lentes: video


 Ese es un video de 5 minutos que muestra los distintos espejos y lentes, y la formacion de imágenes. Explicado a través de un video donde se observan todos los ejemplos se vuelve mas fácil la comprensión. Lo comparto porque personalmente me gusto y espero que a las personas que lo vean les sirva :)

Espejos y Lentes



Los espejos y las lentes se utilizan para desviar la luz. Los primeros reflejan los rayos, las segundas los refractan desviándolos de su trayectoria.
Los espejos más sencillos son los espejos planos aunque también tenemos espejos cóncavos (convergentes) y convexos (divergentes). Debes tener en cuenta no solo los espejos de cristal sino también todos aquellos hechos con metales u otros materiales.
Con cualquier medio transparente podemos construir una lente. Las podemos clasificar en convergentes y divergentes según el camino que sigan los rayos de luz.
Otros elementos ópticos importantes son los prismas que también desvían la luz aunque sus caras no son curvas.

ESPEJOS:
  Centro del espejo.  Las líneas que pasan por el centro son radios de la circunferencia y por tanto perpendiculares al espejo. Los rayos que se dirigen al centro de un espejo se reflejan siguiendo la misma dirección.
En la figura puedes ver como los rayos que pasan por el centro de los espejos no se desvían mientras que los demás si lo hacen.



Foco de un espejo cóncavo: 
Los espejos cóncavos concentran los rayos de luz. En una primera aproximación los rayos paralelos al eje se concentran en un punto llamado foco. Foco de un espejo cóncavo es el punto donde se concentran después de reflejarse los rayos paralelos al eje.
 Distancia focal es la distancia entre el espejo y el foco.  En primera aproximación la distancia focal es la mitad del radio.
Los rayos que pasan por el foco de un espejo cóncavo, después de reflejarse, salen paralelos al eje.

 
Foco de un espejo convexo:
Los espejos convexos dispersan los rayos de luz. En una primera aproximación los rayos paralelos al eje se dispersan de manera que sus prolongaciones parece que salen de un punto.Foco virtual de un espejo convexo es el punto de donde parecen salir los rayos paralelos al eje  después de reflejarse.

Los rayos que se dirigen al foco virtual salen paralelos después de reflejarse en el espejo.

LENTES:
 Una lente en primera aproximación es un elemento simétrico.  En principio son equivalentes sus dos caras.
 Los rayos que pasan por la zona central de una lente apenas se desvían.

Foco de una lente convergente:
 Las lentes convergentes concentran los rayos de luz. En una primera aproximación los rayos paralelos al eje se concentran en un punto llamado foco. Foco de una lente convergente es el punto donde se concentran después de refractarse los rayos paralelos al eje.

 Distancia focal es la distancia entre la lente  y el foco. La distancia focal esta relacionada con la curvatura de las caras de la lente. Llamamos potencia de una lente y se mide en Dioptrías a la inversa de la distancia focal.
Los rayos que van hacia el foco de una lente convergente, después de refractarse, salen paralelos al eje.

Foco de una lente divergente:
 Las lentes divergentes dispersan los rayos de luz. En una primera aproximación los rayos paralelos al eje se separan de manera que parece que salieran de un punto llamado foco virtual. Foco de una lente divergente es el punto de donde parecen proceder los rayos paralelos al eje  después de refractarse.

 En lentes divergentes se usa el convenio de indicar su potencia con números negativos.
Los rayos que pasan por el foco de una lente divergente, después de refractarse, salen paralelos al eje.



Biografía de Isaac Newton

SIR ISAAC NEWTON







Científico inglés (Woolsthorpe, Lincolnshire, 1642 - Londres, 1727). Hijo póstumo y prematuro, su madre preparó para él un destino de granjero; pero finalmente se convenció del talento del muchacho y le envió a la Universidad de Cambridge, en donde hubo de trabajar para pagarse los estudios. Allí Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos de mediados del siglo XVII, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros.

Tras su graduación en 1665, Isaac Newton se orientó hacia la investigación en Física y Matemáticas, con tal acierto que a los 29 años ya había formulado teorías que señalarían el camino de la ciencia moderna hasta el siglo XX; por entonces ya había obtenido una cátedra en su universidad (1669).

Suele considerarse a Isaac Newton uno de los protagonistas principales de la llamada «Revolución científica» del siglo XVII y, en cualquier caso, el padre de la mecánica moderna. No obstante, siempre fue remiso a dar publicidad a sus descubrimientos, razón por la que muchos de ellos se conocieron con años de retraso.
Newton coincidió con Leibniz en el descubrimiento del cálculo integral, que contribuiría a una profunda renovación de las Matemáticas; también formuló el teorema del binomio (binomio de Newton). Pero sus aportaciones esenciales se produjeron en el terreno de la Física.
Sus primeras investigaciones giraron en torno a la óptica: explicando la composición de la luz blanca como mezcla de los colores del arco iris, Isaac Newton formuló una teoría sobre la naturaleza corpuscular de la luz y diseñó en 1668 el primer telescopio de reflector, del tipo de los que se usan actualmente en la mayoría de los observatorios astronómicos; más tarde recogió su visión de esta materia en la obra Óptica (1703).
También trabajó en otras áreas, como la termodinámica y la acústica; pero su lugar en la historia de la ciencia se lo debe sobre todo a su refundación de la mecánica. En su obra más importante, Principios matemáticos de la filosofía natural (1687), formuló rigurosamente las tres leyes fundamentales del movimiento: la primera ley de Newton o ley de la inercia, según la cual todo cuerpo permanece en reposo o en movimiento rectilíneo uniforme si no actúa sobre él ninguna fuerza; la segunda o principio fundamental de la dinámica, según el cual la aceleración que experimenta un cuerpo es igual a la fuerza ejercida sobre él dividida por su masa; y la tercera, que explica que por cada fuerza o acción ejercida sobre un cuerpo existe una reacción igual de sentido contrario.
De estas tres leyes dedujo una cuarta, que es la más conocida: la ley de la gravedad, que según la leyenda le fue sugerida por la observación de la caída de una manzana del árbol. Descubrió que la fuerza de atracción entre la Tierra y la Luna era directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa, calculándose dicha fuerza mediante el producto de ese cociente por una constante G; al extender ese principio general a todos los cuerpos del Universo lo convirtió en la ley de gravitación universal.
La mayor parte de estas ideas circulaban ya en el ambiente científico de la época; pero Newton les dio el carácter sistemático de una teoría general, capaz de sustentar la concepción científica del Universo durante varios siglos. Hasta que terminó su trabajo científico propiamente dicho (hacia 1693), Newton se dedicó a aplicar sus principios generales a la resolución de problemas concretos, como la predicción de la posición exacta de los cuerpos celestes, convirtiéndose en el mayor astrónomo del siglo. Sobre todos estos temas mantuvo agrios debates con otros científicos (como Halley, Hooker, Leibniz o Flamsteed), en los que encajó mal las críticas y se mostró extremadamente celoso de sus posiciones.
Como profesor de Cambridge, Newton se enfrentó a los abusos de Jacobo II contra la universidad, lo cual le llevó a aceptar un escaño en el Parlamento surgido de la «Gloriosa Revolución» (1689-90). En 1696 el régimen le nombró director de la Casa de la Moneda, buscando en él un administrador inteligente y honrado para poner coto a las falsificaciones. Volvería a representar a su universidad en el Parlamento en 1701. En 1703 fue nombrado presidente de la Royal Society de Londres. Y en 1705 culminó la ascensión de su prestigio al ser nombrado caballero.

miércoles, 8 de agosto de 2012

Leyes de Kepler

Johannes Kepler 

(Weil der StadtAlemania27 de diciembre de 1571 -RatisbonaAlemania15 de noviembre de 1630), figura clave en la revolución científica, astrónomo y matemático alemán; fundamentalmente conocido por sus leyes sobre el movimiento de los planetas en su órbita alrededor del Sol . Fue colaborador de Tycho Brahe, a quien sustituyó como matemático imperial de Rodolfo II.
En 1935 la UAI decidió en su honor llamarle «Kepler» a un astroblema lunar.

LAS TRES LEYES DE KEPLER

Durante su estancia con Tycho le fue imposible acceder a los datos de los movimientos aparentes de los planetas ya que Tycho se negaba a dar esa información. Ya en el lecho de muerte de Tycho y después a través de su familia, Kepler accedió a los datos de las órbitas de los planetas que durante años se habían ido recolectando. Gracias a esos datos, los más precisos y abundantes de la época, Kepler pudo ir deduciendo las órbitas reales planetarias. Afortunadamente, Tycho se centró en Marte, con una elíptica muy acusada, de otra manera le hubiera sido imposible a Kepler darse cuenta de que las órbitas de los planetas eran elípticas. Inicialmente Kepler intentó el círculo, por ser la más perfecta de las trayectorias, pero los datos observados impedían un correcto ajuste, lo que entristeció a Kepler ya que no podía saltarse un pertinaz error de ocho minutos de arco. Kepler comprendió que debía abandonar el círculo, lo que implicaba abandonar la idea de un "mundo perfecto". De profundas creencias religiosas, le costó llegar a la conclusión de que la tierra era un planeta imperfecto, asolado por las guerras, en esa misma misiva incluyó la cita clave: "Si los planetas son lugares imperfectos, ¿por qué no deben de serlo las órbitas de las mismas?". Finalmente utilizó la fórmula de la elipse, una rara figura descrita por Apolonio de Pérgamo una de las obras salvadas de la destrucción de la biblioteca de Alejandría. Descubrió que encajaba perfectamente en las mediciones de Tycho.


Había descubierto la primera ley de Kepler:

  • Los planetas tienen movimientos elípticos alrededor del Sol, estando éste situado en uno de los 2 focos que contiene la elipse.
Después de ese importante salto, en donde por primera vez los hechos se anteponían a los deseos y los prejuicios sobre la naturaleza del mundo. Kepler se dedicó simplemente a observar los datos y sacar conclusiones ya sin ninguna idea preconcebida. Pasó a comprobar la velocidad del planeta a través de las órbitas llegando a la segunda ley:
  • Las áreas barridas por los radios de los planetas, son proporcionales al tiempo empleado por estos en recorrer el perímetro de dichas áreas.
Durante mucho tiempo, Kepler solo pudo confirmar estas dos leyes en el resto de planetas. Aun así fue un logro espectacular, pero faltaba relacionar las trayectorias de los planetas entre sí. Tras varios años, descubrió la tercera e importantísima ley del movimiento planetario:
  • El cuadrado de los períodos de la orbita de los planetas es proporcional al cubo de la distancia promedio al Sol.
Esta ley, llamada también ley armónica, junto con las otras leyes permitía ya unificar, predecir y comprender todos los movimientos de los astros. Marcando un hito en la historia de la ciencia, Kepler fue el último astrólogo y se convirtió en el primer astrónomo, desechando la fe y las creencias y explicando los fenómenos por la mera observación.

Ley de Gravitación Universal


LEY DE GRAVITACIÓN UNIVERSAL

Es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. Ésta fue presentanda por Isaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.
Así, con todo esto resulta que la ""ley de la Gravitación Universal"" predice quela fuerza ejercida entre dos cuerpos de masas m1 y m2 separados una distancia d es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir
(1)F = G \frac {m_{1}m_{2}} {d^2}
donde

\scriptstyle F es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.
 \scriptstyle G  es la constante de la Gravitación Universal.




 
 
 GRAVEDAD

La gravedad, en física, es una de las cuatro interacciones fundamentales. Origina la aceleración que experimenta un objeto en las cercanías de un objeto astronómico. También se denomina fuerza gravitatoriafuerza de gravedadinteracción gravitatoria ogravitación.
Por efecto de la gravedad tenemos la sensación de peso. Si estamos en un planeta y no estamos bajo el efecto de otras fuerzas, experimentaremos una aceleración dirigida aproximadamente hacia el centro del planeta. En la superficie de la Tierra, la aceleración de la gravedad es aproximadamente 9,81 m/s2.



Instituciones Astronomicas

Instituciones Astronomicas de la Argentina


  • Observatorio Astronómico Ampimpa
  • Observatorio Pierre Auger
  • Observatorio Astronómico Municipal de Mercedes
  • Observatorio Astronómico de Río Grande (EARG)
  • Instituto Argentino de Radioastronomía
  • Complejo Astronómico "El leoncito"
  • Instituto Astronómico de Física del Espacio
  • Observatorio Astronómico Municipal de Rosario
  • Planetario de la Ciudad de Buenos Aires
  • Comisión Nacional de Actividades Espaciales (CONAE)
  • Asociación Argentina Amigos de la Astronomía
  • Institución A.E.A (Asociación Entrerriana de Astronomía)

OBSERVATORIO ASTRONÓMICO AMPIMPA


Aspectos institucionales

Se encuentra a 10 km de Amaicha del Valle, sobre la RP 307, a 2560 m de altura. Fue fundado en 1985 para estudiar el Cometa Halley en su último paso por la Tierra. Está emplazado en un balcón natural al valle de Santa María, enfrentando a las sierras de Quilmes o del Cajón, y mirando simultáneamente a las provincias de Tucumán, Catamarca y Salta. Las características geográficas brindan un cielo diáfano, en forma casi permanente, sin polución ambiental ni contaminación lumínica, lo que permite la realización de observaciones en condiciones óptimas. Es el único en su tipo en la región del Norte Argentino.  Actualmente se desarrollan actividades educativas, realizando campamentos científicos. El director de la institución se llama Alberto Mansilla

Instrumental que poseen

Telescopio principal: reflector Newtoniano de 250 mm de apertura F/10. Ubicado dentro de la cúpula. A su vez disponen de otros dos telescopios: un Schmidt-Newtoniano de 200 mm (LXD-55), y un reflector Cassegrain de 200 mm F/14.

Proyectos de investigación y actividades que desarrollan



*Campamentos científicos para Contingentes Escolares.

*Campamentos Científicos Internacionales para docentes.
Son proyectos reconocidos ampliamente a nivel local y  nacional, que cuenta con el Auspicio del Ministerio de Educación de la Nación.

Programas de visitas cortas para contingentes escolares:
Observaciones solares-  desde las 09:00 hasta las 17:00 hs.
Programa educativo - Observaciones nocturnas.
Programa educativo- Noche en observatorio.
Programa educativo- Día completo en el observatorio.
Programa educativo- Día libre en observatorio.  
Programa educativo- Dos días en observatorio.
 Micro campamento científico. Programa educativo- Visita diurna.

      

OBSERVATORIO PIERRE AUGER


Aspectos institucionales
Ubicación del Observatorio



















El Proyecto Pierre Auger comenzó como un taller de seis meses el 30 de enero de 1995. Durante el taller, un grupo central de alrededor 10 científicos trabajaron en el Fermilab.
El Observatorio Pierre Auger está emplazado en el hemisferio sur, en los departamentos de Malargüe y San Rafael, provincia de Mendoza, República Argentina.
El Observatorio consiste en un arreglo de 1600 detectores de superficie, distanciados a 1,5 km entre sí y cubriendo una superficie total de 3000 km2. Éstos se complementan con un conjunto de 24 telescopios de fluorescencia de alta sensibilidad, que en las noches despejadas y sin luna observan la atmósfera para detectar la tenue luz ultravioleta que producen las cascadas de rayos cósmicos al atravesar el aire.
Alrededor de 500 científicos de casi 100 instituciones de 18 países participan en este desafío científico.
Los países participantes son: Alemania, Argentina, Australia, Brasil, Croacia, Eslovenia, España, Estados Unidos, Francia, Italia, México, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, Rumania y Vietnam.

Datos Técnicos

Objetivo: determinar la naturaleza, energía y lugar de origen de los rayos cósmicos con energías superiores a los 1018eV, para comprender mejor el universo que nos rodea.

Tipo de observatorio: “híbrido”, consiste en un arreglo de detectores de superficie y un sistema de telescopios de fluorescencia atmosférica para la observación de cascadas de partículas secundarias.

Estadística: Unos 30 eventos por año con energías a 1020 eV; determinar su valor es uno de los principales objetivos de este observatorio.

Sitio de emplazamiento: Malargüe y San Rafael, Mendoza, Argentina.

Detectores de superficie:  Área cubierta: 3000 km2. Cantidad de detectores: 1600. Distancia entre detectores: 1,5 km. Tipo de detectores: Cherenkov, con 12000 litros de agua purificada y 3 tubos fotomultiplicadores cada uno.

 Instrumental que poseen
Detectores de Fluorescencia: En lugar de detectar las partículas de la lluvia cósmica al llegar a la superficie terrestre, el observatorio de fluorescencia registra el paso de la cascada por la atmósfera. Para detectar la fluorescencia hay cuatro edificios de telescopios en la periferia del arreglo de superficie llamados: Los Leones, Coihueco, Los Morados y Loma Amarilla, abarcando cada uno un ángulo de 180º con seis telescopios que observan un ángulo de 30º cada uno.

 Detectores de Superficie: El detector de superficie, llamado también el “arreglo de superficie” consiste en un conjunto de 1600 detectores individuales. La distancia entre estos detectores es de 1500 metros, con lo que abarcan una superficie de 3000 km2. la distancia entre los detectores fue escogida de forma tal que un chubasco atmosférico de energía superior a los 5x1018 eV, que al llegar a la superficie de la Tierra tiene una extensión de unos 5-10 Km. y llegue activar al menos 4 o 5 detectores.

Telescopio Lidar: Junto a cada uno de los edificios de fluorescencia (Los Leones, Coihueco, Los Morados y Loma Amarilla) se encuentra instalado el Telescopio LIDAR (Light Detection and Ranging). La finalidad de este instrumento es medir la opacidad de la atmósfera debido a la presencia de aerosoles (partículas como hielo, polvo, humo, etc.) o cobertura de delgadas capas de nubes en los estratos superiores de la atmósfera.


Proyectos de Investigación

Los proyectos tienen como objetivo identificar la fuente desconocida de los rayos cósmicos de más alta energía que llegan a la atmósfera. El grupo de diseño recibió apoyo del Fermilab, la Asociación para la Investigación en las Universidades y la Fundación Nacional de Ciencia de Estados Unidos, UNESCO y la Fundación Grainger.

Lista de proyectos:
-El proyecto HEAT permite detectar rayos cósmicos con energías diez veces más bajas (1017 eV), utilizando telescopios de fluorescencia similares a los de Auger, pero que observan la atmósfera a mayores alturas.Se trata de tres telescopios de fluorescencia instalados en Cerro Coihueco.
-AERA es un novedoso sistema de antenas para medir las tenues y breves señales de radio (en el rango de frecuencias de decenas de MHz) que se producen en las cascadas atmosféricas producidas por rayos cósmicos de ultra alta energía. Para ello, utiliza un arreglo de decenas de antenas convencionales, con una electrónica de procesamiento de señales desarrollada para este fin.
-El proyecto AMIGA "Auger Muons and Infill for the Ground Array" tiene como objetivo ampliar el rango de detección de Auger, para observar rayos cósmicos de energías menores, hasta 1017 eV, para  estudiar la transición de rayos cósmicos galácticos (de más baja energía) a extragalácticos (de más alta energía).
 -El detector subterráneo BATATA permitirá estudiar rayos cósmicos de energías entre 1017 y 1018 eV. Estas energías son un orden de magnitud menor que las energías para las cuales fue diseñado el Observatorio Pierre Auger.
-AMBER (Air-Shower Mi-crowave Bremsstrahlung Radiometer) es un experimento que intentará detectar ondas electromagnéticas, en el rango de las microondas, producidas por las cascadas de partículas generadas por rayos cósmicos de muy alta energía. Consiste en una antena de 2,5 m de diámetro, instalada en el cerro Coihueco, en el mes de mayo de 2011. Se encuentra en las cercanías de uno de los edificios de fluorescencia del Observatorio Auger y del proyecto HEAT.

Actividades que desarrollan

Este observatorio además de realizar las observaciones e investigaciones ya mencionadas, cuenta con visitas generales (estas duran una hora y la misma consiste en contar el trabajo, funcionamiento y actualidad del observatorio a través de presentaciones y videos) y visitas escolares (fuera del horario normal del turista, son gratuitas y tienen presentaciones desde niveles iniciales hasta universidades).